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The absence of magnetic long-range order in the triangular lattice spin-1 antiferromagnet NiGa2S4 �S.
Nakatsuji et al. Science 309, 1697 �2005�� has prompted the search for a novel quantum ground state. In
particular, several experiments suggest the presence of a linearly dispersing mode despite no long-range
magnetic order. We show that the anomalous low-temperature properties of NiGa2S4 can naturally be explained
by the formulation developed by Halperin and Saslow �Phys. Rev. B 16, 2154 �1977�� where the linearly
dispersing Halperin-Saslow mode may exist in the background of frozen spin moments and zero net magne-
tization. We provide consistency checks on the existing experimental data and suggest future experiments that
can further confirm the existence of the Halperin-Saslow mode. Our results place important constraints on any
microscopic theory of this material.
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I. INTRODUCTION

Frustrated magnets are an excellent playground for the
discovery of novel quantum phases of matter. The intricate
interplay between geometrical frustration and quantum fluc-
tuations lies at the heart of the physical mechanism for such
possibilities. Recently, various frustrated magnets with small
spin �S= 1

2 and S=1� have been discovered.1,2 These experi-
ments provide great opportunities for studying quantum as
well as thermal fluctuation effects in frustrated magnets. In
particular, NiGa2S4 is an insulator composed of spin-1 Ni
atoms on a triangular lattice, which shows no long-range
magnetic order in neutron scattering down to at least 0.35 K,
despite an antiferromagnetic Curie-Weiss temperature
��CW�=80 K.1 Instead, spin freezing is observed at Tf
=8 K, a temperature that also serves as the onset for a vari-
ety of unusual experimental signatures.3,4

Below Tf, the spin susceptibility saturates to a constant
value, while the magnetic part of the specific heat acquires a
T2 power law.1 This T2 dependence of the specific heat is
consistent with the presence of gapless hydrodynamic modes
propagating in two dimensions, provided that these modes
are coherent over a length scale L0 that exceeds 500 lattice
spacings.1 On the other hand, elastic neutron scattering on
powder1 and single crystal5 samples show no evidence of
long-range magnetic order. Instead, coincident with the spin
freezing temperature, there is the onset of static, yet short-
range magnetic correlations, with a correlation length � of
order of only seven lattice spacings. In addition, nuclear
magnetic resonance �NMR� measurements have observed a
spin-lattice relaxation rate 1 /T1�T3 for T�Tf.

6 Recent in-
elastic neutron-scattering measurements observe a linearly
dispersing excitation mode.5

In order to account for some of these results, there have
been recent proposals of the formation of subtle types of
long-range spin ordering. Based on models with large biqua-
dratic interactions, Tsutentsugu and Arikawa7 proposed a
three-sublattice nematic state and Bhattacharjee et al.8 pro-
posed a uniform nematic state �see also Ref. 9 for related
theoretical models�. On the other hand, Kawamura and
Yamamoto proposed a state with bound Z2 vortices.10 The
nematic states of Refs. 7 and 8 may be consistent with the

constant spin susceptibility, and also contain gapless director
modes, which can account for the T2 specific heat. However,
these proposals leave a few questions unanswered. For in-
stance, there is no clear connection between the onset of
nematic order and the appearance of static short-range mag-
netic correlations seen at Tf. In addition, a nematic state does
not account for the linearly dispersing inelastic neutron-
scattering peak—the director modes of a nematic do not
couple directly to neutrons.9 In this Rapid Communication,
we argue that these experimental discoveries can be ex-
plained by the presence of gapless Halperin-Saslow �HS�
modes.11 Halperin and Saslow originally proposed the exis-
tence of hydrodynamic modes in the context of spin glasses.
However, as discussed below, HS modes can exist in a much
broader class of materials. HS modes have a linear disper-
sion, and they couple directly to atomic spins and also to
neutrons. Therefore, they can account for the full phenom-
enology of NiGa2S4 in a natural way. In the rest of the paper,
we will provide various qualitative and semiquantitative con-
sistency checks, and also discuss future experimental conse-
quences of the HS scenario. We are not aware of any con-
firmed example of the HS modes, therefore NiGa2S4 may
present the first clear case for these long-sought low energy
modes. Our discussion will be phenomenological in nature,
as it will not address the microscopic mechanism by which
the system chooses the underlying state supporting the HS
modes, but will rather rely on general hydrodynamic consid-
erations. This has the advantage that our results are not lim-
ited to NiGa2S4, but are easily adapted to other potentially
relevant frustrated magnets.

II. OVERVIEW OF THE HALPERIN-SASLOW THEORY

Halperin and Saslow showed that a system with static
moments can support low-energy hydrodynamic modes,
even in the absence of periodic long-range magnetic order.11

Their formalism is very general and relies on two assump-
tions only: the presence of static moments in the �possibly
metastable� ground state, and a finite spin stiffness to slow
spatial deformations of the static spin texture. If the moments
are noncollinear and have zero net magnetization, the HS
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theory predicts the existence of three linearly dispersing hy-
drodynamic modes. The elastic neutron-scattering experi-
ments in NiGa2S4 indicate that there are static helical spin
textures at temperatures below Tf. The fact that these spin
textures are short ranged is inconsequential to the HS sce-
nario, provided that a finite spin stiffness survives at long
distances.

For a system satisfying these assumptions, the free-energy
cost of a weakly perturbed state is11

�F�m,�� =
d

2 �
	=1

3 � d2r�m	
2
−1 + �s���	�2� . �1�

Here 
 is the spin susceptibility, �s is the spin stiffness, m	�r�
is the local magnetization density, and �	 are locally defined
rotation angles that describe the deformation in the excited-
state spin configuration. In Eq. �1� we have assumed that the
system is composed of weakly coupled layers of thickness d.
The variables m	 and �	 satisfy the commutation relations
��	�r� ,���r���=0 and

�m	�r�,m��r��� = i
���r − r���	�
m
�r� , �2a�

��	�r�,m��r��� = i
���r − r����	� + �	�
�
�r�� , �2b�

where 
=g�B /� is the gyromagnetic ratio. Equation �2a�
identifies the magnetization m	 as the generator of rotations,
while Eq. �2b� states that m	 and �	 are canonically conju-
gate variables, together with the fact that �	 transforms as a
vector under rotations.

We obtain the Heisenberg equations of motion for m	 and
�	 using Eqs. �1� and �2�. These yield three degenerate po-
larizations of spin waves with dispersion �k=vk, with veloc-
ity v=
��s /
. More generally, 
 and �s are tensors, leading
to three nondegenerate spin waves, with polarization-
dependent velocities v j =
�� j /
 j.

III. BASIC CONSIDERATION: CONTRASTING SPECIFIC
HEAT AND ELASTIC NEUTRON-SCATTERING

DATA

The presence of gapless HS modes is consistent with the
T2 specific heat in NiGa2S4. For linearly dispersing modes in
two dimensions,

cM

NA�
=

3��3�
�d

kB
3T2

�2 �
j

1

v j
2 −

3kB�

L0
2d

. �3�

Here, ��3�=1.202. . ., NA is Avogadro’s number, the sum runs
over polarizations j, v j is the collective-mode velocity, and
�=�3a2d /2 is the volume of a unit cell, where we have
assumed decoupled layers of thickness d and a is the in-
plane lattice spacing. Here, we have allowed for the possi-
bility that the collective modes are coherent only up to some
length scale L0. Experimental fits yield a lower bound, L0
�500a.1

The HS modes correspond to the elastic deformations of
an order parameter, hence they are well defined to the lowest
energies or even in the hydrodynamic limit. The modes be-
come sharper at higher energies or in the collisionless regime

due to a lack of scattering. Since the real part of the disper-
sion is the same in the hydrodynamic and collisionless
regimes,11 the specific heat shows the same temperature de-
pendence in both cases, leading to no noticeable change
across two regimes.

Elastic neutron-scattering measurements show that the
freezing temperature Tf coincides with the onset of static
short-range-ordered moments. Peaks appear at an incommen-
surate wave vector Q= �1 /6−� ,1 /6−��. The peaks are static,
but they are broad in momentum, corresponding to short-
range order over a length �xy 	7a in plane, and �z	6 Å out
of plane. The moments arrange in a helical pattern. This
wave vector and spin structure are expected from a system
with a weak ferromagnetic nearest-neighbor coupling and a
large antiferromagnetic third-nearest-neighbor coupling, J3
�−J1�0, which is consistent with semiempirical cluster
calculations.12 A large J3�0 is also supported by ab initio
calculations.13

The correlation length �xy is much smaller than the scale
L0, i.e., the collective modes responsible for the T2 specific
heat exist over a much larger length scale than the helical
regions seen in neutron scattering. Here we explore the pos-
sibility that below Tf, the system is in a quantum spin-glass-
like state composed of helical domains that do not order at
long distances, yet have a finite spin stiffness. We may think
of each helical domain as some block degree of freedom.
The residual interaction between blocks, of order Tf, is frus-
trated and disordered, leading to freezing behavior at Tf and
the absence of long-range helical order. Precisely how such a
state is formed may require understanding of microscopic
details such as the role of quantum S=1 moments. Indepen-
dently of the underlying mechanism, however, we focus on
the generic properties that follow from the hydrodynamics of
such a system.

IV. TWO ENERGY SCALES FROM THE SUSCEPTIBILITY
AND SPECIFIC HEAT

As a first semiquantitative check, we would like to know
whether the magnitude of the low-temperature susceptibility
and specific-heat anomaly are consistent with the HS sce-
nario. Here these two quantities are related through the spin
stiffness �s, since cM /T2�1 /v2�
M /�s. From 
M and
cM /T2, we can extract two energy scales,

E1 =
2g2�B

2S�S + 1�
z
M/NA

= kB�113 K� , �4�

E2 =
3np��3�

�

kB
3

g2�B
2


M

cM/T2 = kB�6.5 K� , �5�

where z=6 is the coordination number of the lattice, and
np=3 is the number of degenerate hydrodynamic modes.
Above, we have used the experimentally measured values,

M�T→0�=0.0089 emu /mole and cM /T2=2.6
�10−2 J mole−1 K−3.1

The energy E1 is related to the effective interaction be-
tween a spin and its environment, whereas E2 corresponds to
the spin stiffness extracted from measurements. Note that,
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while E1 is comparable to the microscopic energy scale
��CW�=80 K, E2 is much smaller. This is consistent with the
HS scenario: the stiffness is expected to be considerably
renormalized relative to the microscopic energies, to a scale
of order of the freezing temperature Tf =8 K.

We can provide a theoretical upper bound on the spin
stiffness. This is done by computing the spin stiffness of a
long-range-ordered helical state, ignoring the fact that spin
correlations in NiGa2S4 are short ranged. Carrying out an
analysis similar to Ref. 11,

�	�
max = −

1

2V
��	� + �	,3��,3��

��
J�� �x

2�
i


Si · Si+�� � , �6�

where the sum runs over all vectors �� connecting lattice
sites, �x=�� · x̂ for an arbitrary direction x̂, and V is the vol-
ume of the sample. Equation �6� is an upper bound on the
stiffness of NiGa2S4, since it assumes an elastic deformation
of the spin texture that is uniform across the sample. On the
other hand, in the real material with disorder, it pays off to
put the bulk of the deformation across weak links. Since the
helical spin correlations in NiGa2S4 have wave vector near
Q= �1 /6,1 /6�, Eq. �6� gives the upper bound,

�zz
max = 2�xx

max = 2�yy
max � 4�3J3
Si�2/d , �7�

Using ��CW�=80 K and the ratio1 J1 /J3=−0.2, we obtain
J3�kB�25 K�. Plugging in the experimental values,1 g=2,
�
Si���0.75, we obtain an upper bound, �xx

maxd=kB�49 K�,
which is indeed larger than E2. Conversely, we get a lower
bound cM /T2�2.9�10−3 J mole−1 K−3 that is consistent
with the experimentally measured value, which is about nine
times larger than this bound. In fact, the ratio between the
two is comparable to the frustration parameter, Tf / ��CW�,
which is a natural renormalization factor for the spin stiff-
ness in a frustrated spin system.

Note that the definition of the two energy scales E1 and E2
is model independent, and can therefore be used to charac-
terize the experiments and to compare with other theoretical
proposals. As we have argued, in the HS scenario, it is natu-
ral to find E2	Tf �E1	��CW�. On the other hand, for the
spin nematic states of Refs. 7 and 8, this requires some fine
tuning. For example, in order to obtain E2� ��CW�, the sys-
tem has to be tuned to be very close to a quantum critical
point.

V. EFFECT OF MAGNETIC FIELD AND SPIN
ANISOTROPY

One of the salient features of NiGa2S4 is the weak effect
of magnetic fields on the specific-heat anomaly. In a typical
magnetically ordered system, external fields gap out some of
the collective modes and thus suppress the specific heat be-
low a temperature of order T�=g�BH /kB.

In the presence of an external field, one must add a Zee-
man coupling to the free energy, fZ=−g�BH ·m. The spec-
trum of collective modes is computed from the Heisenberg
equations of motion for �	 and m	 by taking into account Eq.
�2�. It turns out the second term in the commutator �Eq. �2b��
only gives anharmonic corrections that can be ignored for
small amplitude spin waves.

The excitation spectrum can be obtained from these equa-
tions of motion and is composed of three nondegenerate po-

larizations, �0=vk and ��= �
g�BH

2 +��
g�BH

2 �2+ �vk�2.
Hence, �0 is unchanged by the magnetic field and �+

�g�BH+ v2k2

g�BH is gapped. However, the third mode, �−

� v2k2

g�BH , obtains a quadratic spectrum at low energies. This
soft mode compensates for the gapped mode �+, so that the
deviation from the T2 anomaly is negligible down to T
�T� /4 as shown in Fig. 1. This is consistent with the weak-
field dependence of the specific heat down to the lowest tem-
perature in the experiments.

In realistic systems, anisotropy in the spin interactions
will cut off the T-linear specific heat. Susceptibility measure-
ments suggest that NiGa2S4 has a weak easy-plane aniso-
tropy, which we can capture by a free energy fan=uan��x

2

+�y
2�. In the absence of a magnetic field, this type of aniso-

tropy introduces a gap in two of the three HS modes. This
gap is of order uan, and is likely very small in NiGa2S4.

VI. NUCLEAR MAGNETIC RESONANCE

NMR measurements on 69,71Ga nuclei yield a spin-lattice
relaxation 1 /T1�T3 at temperatures below 1 K.6 This is con-
sistent with the HS scenario. The dissipative part of the dy-
namic spin susceptibility due to the HS modes is 
��k ,��
=


0Dk2�

2 � 1
��−vk�2+�Dk2�2

1
��+vk�2+�Dk2�2 � plus regular terms. For

modes propagating in two dimensions, this leads to 1 /T1
�T3. Note that, even if the HS modes are gapped due to
anisotropy, two-magnon Raman scattering also yields 1 /T1
�T3,14 as does two-magnon Raman scattering in a nematic
state.15

VII. DIRECT DETECTION OF HS MODES VIA
INELASTIC NEUTRON SCATTERING AND FUTURE

EXPERIMENTS

The HS modes are spin-one excitations, and therefore
couple directly to neutrons. Recent inelastic neutron-
scattering measurements indeed see evidence of a linearly
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FIG. 1. Specific heat for an isotropic system �thick solid line�;
for an isotropic system in a magnetic field �thin solid line�; and for
a system with easy-plane anisotropy with uan=0.3T�, together with
an magnetic field perpendicular to the anisotropy plane �dotted
line�. Here, T�=g�BH.
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dispersing mode centered at wave vector Q, and with spin-
wave velocity vneutron=29 meV Å.5 On the other hand, the
velocity extracted from the specific-heat anomaly via Eq. �3�
is much smaller, vsh=�np5.4 meV Å=9.35 meV Å, where
we use np=3 collective-mode polarizations.

This large difference between vsh and vneutron is due to the
fact that vneutron probes the velocity of relatively high-energy
spin waves. In the current measurements, the inelastic neu-
tron peaks can only be resolved clearly for energies larger
than 1 meV. These high-energy modes do not contribute di-
rectly to the specific-heat anomaly below Tf =8 K. In fact, at
these energies the spin waves are expected to probe the bare
stiffness. An estimate for the bare stiffness tensor is the stiff-
ness computed for the helical state, as given in Eq. �7�. This
yields two different spin-wave velocities, vhelical

x =vhelical
y

=24 meV Å and vhelical
z =34 meV Å. These velocities are

consistent with current experiments—the peaks in the neu-
tron data are very broad, and thus it may be difficult to iden-
tify two separate but nearby peaks.

Future experiments may be able to distinguish the two
separate spin-wave velocities. In addition, with increased
resolution it may be possible to measure the dispersion of
spin waves to lower energies. In the HS scenario, this would
yield a spin-wave velocity that changes with wave vector,
from vsh very close to Q, to vhelical at wave vectors far from
Q. Hence, this would constitute a direct measurement of the
length-scale dependent spin stiffness. One further signature
of the HS modes that may be seen in future neutron-
scattering experiments is the spin-wave damping, which is
predicted to be11 �=D�k−Q�2. We note that the low-energy
director modes that occur in the nematic states of Refs. 7 and
8 do not couple directly to neutrons at long wavelengths,9

and therefore cannot account for these inelastic neutron-
scattering peaks.

VIII. OTHER CONSIDERATIONS: TWO-LEVEL SYSTEMS

In conventional spin glasses, the T2 contribution to spe-
cific heat coming from HS modes is overwhelmed by a linear
T contribution coming from localized two-level systems
�TLS�,16 cTLS= �2

6 N0kB
2T. Here, N0 is the density of states of

TLS. A rough estimate for N0 can be obtained by assuming
that the energy distribution function of a single TLS is
1 / �kBTf�, and that there is one TLS in each correlation vol-
ume v�	�xy

2 d. Using the in-plane correlation length �xy
	7a, one obtains an approximate upper limit N0�1 /

�xy
2 �zkBTf, leading to

cTLS

T �3.0�10−2 J mol−1 K−2. If
present, such a contribution would be seen only at the lowest
temperatures explored in Ref. 1. This suggests that the HS
modes give the dominant contributions in the temperature
range studied in Ref. 1.

IX. CONCLUSION

We have shown that the phenomenology of NiGa2S4 be-
low the freezing temperature Tf can naturally be explained
by the Halperin-Saslow scenario. In this theory, linearly dis-
persing HS modes in the background of frozen spin moments
can exist for a much longer length scale than that of the
short-range magnetic order. This explains the simultaneous
onset of the short-range helical magnetic order and T2 spe-
cific heat at Tf. The HS modes are consistent with T3 spin-
lattice relaxation rate observed in the NMR experiments. We
also showed that the specific-heat anomaly in the HS sce-
nario is only weakly sensitive to applied magnetic field as
observed in the experiments. In more recent experiments on
purer samples,17 indications of freezing start to show up at
10K. However, only at 2 K do the magnetic moments seem
to be completely frozen.17 Given that the freezing tempera-
ture may depend on the time scale of the probe, there might
be some ambiguity associated with it, leading to some uncer-
tainty of the value of the spin stiffness in our analysis. No-
tice, however, that the value of the experimentally extracted
spin stiffness E2=6.5 K is in rough agreement with both
extremes of the temperature range 2–10 K.

It was pointed out that the HS modes may have already
been observed in inelastic neutron scattering at relatively
high energies, although current experimental resolution does
not give access to the low-energy mode dispersion relation.
We argued that the spin-wave velocity measured at relatively
high energies reflects the bare spin stiffness and the velocity
of the low energy HS modes, which is directly related to the
low-temperature specific heat, should be different at lower
energy scales. We provided self-consistent estimates of both
the low- and high-energy spin-wave velocities. These predic-
tions as well as the three polarizations of the spin waves and
the detailed magnetic field dependence can be tested in fu-
ture neutron-scattering experiments on single crystals.
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